Calipers II: Using Simulations to Assess Complex Science Learning

Edys Quellmalz, PI; Co-PIs: Barbara Buckley and Mark Loveland – WestEd; Michael Timms- Australian Center for Educational Research Partners: George DeBoer (AAAS) and Joan Herman (CRESST)

GOALS

- Design and develop simulation-based formative and benchmark assessments of core ideas and inquiry practices for physical, life, and earth science.
- 2. Develop formative assessment simulation modules with immediate, individualized feedback and graduated coaching followed by offline Reflection Activities.
- 3. Provide evidence of the technical quality, feasibility, and usability of the simulation-based assessments
- 4. Study the effects of formative assessments on complex science learning and inquiry practices.
- 5. Align the Calipers II benchmark and formative, embedded assessments to national science standards and the AAAS item bank.

PRODUCTS

Simulation-based embedded assessments and benchmark assessments for middle school:

- Force & Motion
- Atoms & Molecules
- Ecosystems

Assessment designs for:

- Plate Tectonics
- Climate

RESEARCH AND EVALUATION QUESTIONS

- What impact does use of Calipers II embedded assessments have on student learning?
- 2. To what extent does evidence collected from the embedded and benchmark assessments support inferences about a student's proficiency on each standard?
- To what extent does use of feedback and coaching in the embedded assessments relate to performance on the benchmark and external posttest?
- Are the simulation-based assessments feasible for implementation across a range of classrooms and technical infrastructures?
- 5. Do teachers and students consider the simulation-based assessments useful for monitoring learning and summarizing proficiency?
- 6. Do the professional development (PD) strategies support teachers in their selection, administration, interpretation and use of the classroom-embedded and benchmark assessments?

KEY FEATURES

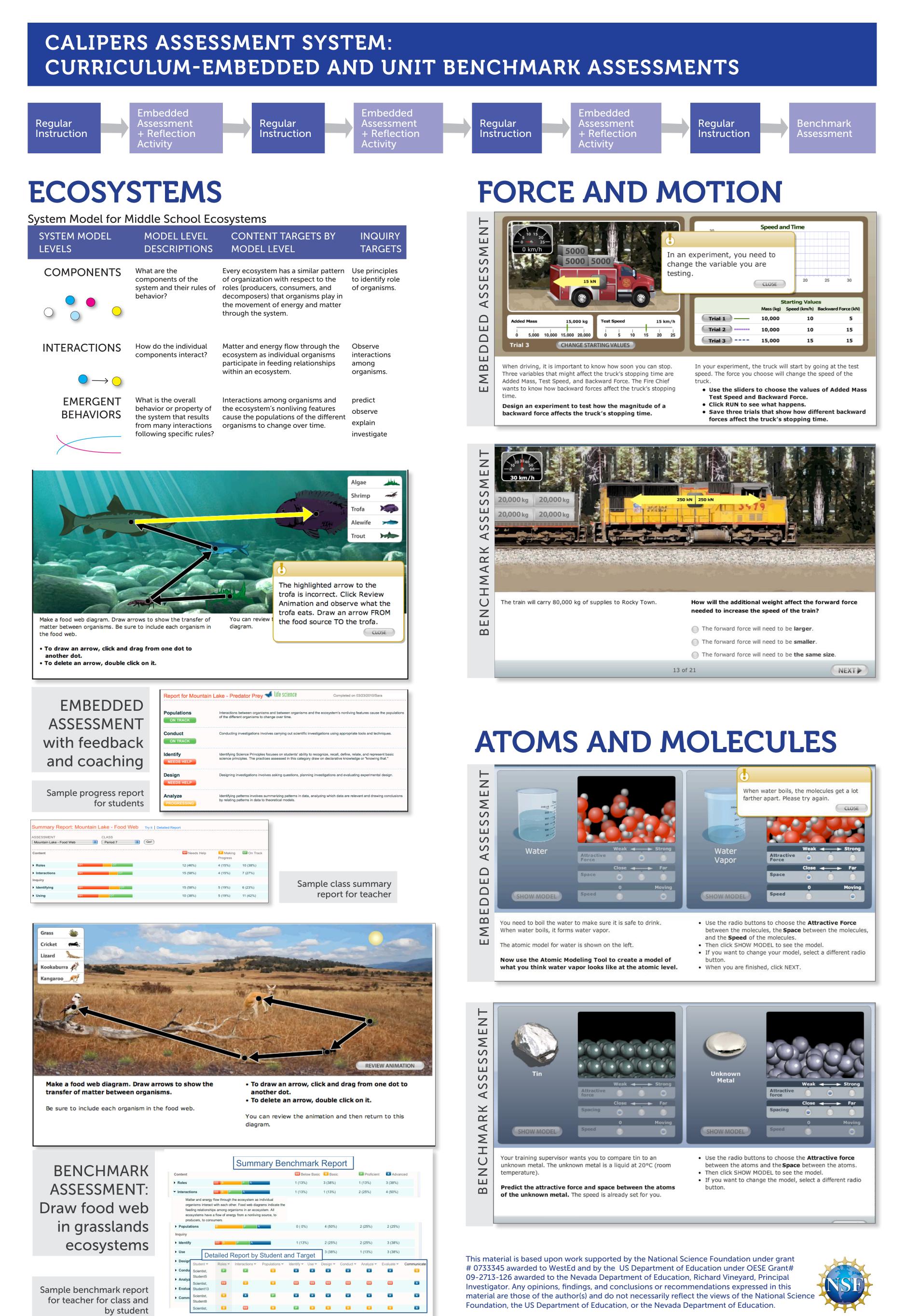
Model-based learning

Evidence-Centered Assessment Design

Simulations of age appropriate science system models

- Multiple representations
- Active inquiry
- Simulation-based, curriculum-embedded assessments for formative use
 - Immediate, individualized feedback and graduated coaching
 - Reflection activities for transfer, collaboration, discourse

Simulation-based unit benchmark assessment for summative proficiencies


CRESST EXTERNAL EVALUATION

Review progress, designs, instruments, findings

- Conduct case studies of classroom implementation
 - Classroom observations
 - Cognitive labs
 - Teacher interviews

simscientists.org

VALIDATION OF ASSESSMENT SUITES

External Review (AAAS)

Think-Alouds N				
ECO	5 students 2 teachers			
F&M	5 students 2 teachers			
A&M	2 students 1 teacher			
Classroom Feasibility				
ECO	125 students 1 teacher			

33 students F&M 1 teacher

Pilot Test		
3529 students		
1036 students		
253 students		

FIELD TEST - IN PROGRESS

Impact of Formative Assessment

Randomized Control Trial

- Each teacher's classes were randomly assigned to treatment or control group.
- Participants currently enrolled
- Methods
 - LMS data students' answers and actions
 - Multi-dimensional IRT analyses
 - HLM analyses to determine effect size
- Partial Sample Results for Ecosystems
- Participants: 763 middle school students, 5 teachers
- Treatment groups outperformed Control groups
 - benchmark assessment (effect size 0.43)
- Holding pre test constant, mid-level students (pre test) outperformed low and high
- students on the benchmark (effect size 0.52).

CONCLUSIONS

Calipers II assessments are:

- feasible to implement on a large scale in a range of settings and technical infrastructures, • useful for formative purposes to monitor progress and adjust instruction, and
- of sufficient technical quality to serve as credible components of multi-level state assessment
- systems.

NEXT STEPS: ANALYSIS AND DISSEMINATION

IRT analyses of assessment data HLM analyses to determine effect size

OBSIGNATIONS UestEd 😥

Data collected	Use of Data	Results
 Ratings of Alignment with standards Scientific accuracy Item quality Grade level appropriateness 	Documentation	Revisions as needed
Data collected	Use of Data	Results
Audio of think-aloud Screen capture of actions Researcher notes	Usability of interface Accessibility of content Construct validity	Revisions as needed Tasks elicit targeted performances for 84% students.
Data collected	Use of Data	Results
Data collected LMS data: actions & answers Cognitive labs Classroom observations Teacher surveys Teacher interviews	Use of Data Usability in classrooms Participation patterns Engagement Instructional utility	Results Technical improvements (bandwidth, loading times) Revision of reflection activities Revision of teacher materials
LMS data: actions & answers Cognitive labs Classroom observations Teacher surveys	Usability in classrooms Participation patterns Engagement Instructional	Technical improvements (bandwidth, loading times) Revision of reflection activities

• Treatment includes simulation-based formative assessments.

Control does not include simulation-based formative assessments.

- Ecosystems: ~21 teachers, ~2,400 students
- Atoms & Molecules: ~10 teachers, ~1,500 students
 - learning gains = Post Pre (effect size 0.19)

- Triangulation across data sources to determine technical quality, usability, and feasibility
- External evaluation including classroom case studies